Science Build Rules

Apr 24, 2023

Contents

Overview of science-build-rules 1
Installation of science-build-rules 3
Builders 5
3.1 Common features among builders oL o 5
3.2 Spack-builder 5
Deployers 7
4.1 Common features among deployers 7
4.2 Rsyncdeployer o e e e 7
Configuring a build 9
5.1 Spackbuilds e e 9

CHAPTER 1

Overview of science-build-rules

science-build-rules is a suite of Python classes and utilities that make it easier to create automated builds
with Spack, Singularity and Anaconda. It is designed to run with science-build-environment, but it can also
be run independently. The basic structure is described below:

Typical build will do the following steps:
1. Read and validate configuration. This is done by the ConfReader-class.
2. Build the software based on build rules. This is done by subclasses of the Builder-class.
3. Test the installed software. This step is not yet implemented.

4. Deploy software from the build system into a target system with a desired deployment strategy. This is done by
subclasses of the Deployer-class.

Idea in “build-rules” is that a series of operations is performed in a specific way, defined by the Bui lder-class and
configuration files. Each subclass of Builder is tool specific, for example SpackBuilder creates builds with
Spack. The user chooses the subclass of Builder designed for the tool they wish to use and modifies configuration
files to match their needs.

Before doing a build, configuration files are loaded in and validated. The build and deployment commands, which are
based on the configuration files, are then predefined and wrapped in subclasses of the Rule-class. Each subclass of
Builder and Deployer can have their own configuration yaml-files and corresponding schemas.

Science Build Rules

2 Chapter 1. Overview of science-build-rules

CHAPTER 2

Installation of science-build-rules

Science Build Rules

4 Chapter 2. Installation of science-build-rules

CHAPTER 3

Builders

3.1 Common features among builders

All of the builders share some common features.

3.1.1 Configuration file structure

When working with science-build-environment, all configuration files should be stored in the following file
structure:

’<build rules repo>/configs/<build target>/<builder>/*.yaml

e.g.:

’ ~/science-build-rules/configs/centos/spack/packages.yaml

All configuration files should be in yaml-format.

3.1.2 build_config.yaml and deployment_config.yaml

All builders have these configuration files. build_config.yaml contains the configuration for the builders and its
format depends on the builder. deployment_config.yaml contains configuration for the deployers. Its format
is described in the Deployers-page.

3.2 Spack-builder

Spack-builder uses Spack for installing software. Before running the builder spack should be available in the shell
that launches the build.

After validating the configuration structure, the build runs the following build rules:

https://spack.io

Science Build Rules

SAE U i

Reindex installed packages

Remove old compilers configuration file
Add existing compilers

Install compilers

Install packages

Recreate modules

Chapter 3. Builders

CHAPTER 4

Deployers

4.1

Common features among deployers

Deployers are shared among builders. Each Deployer has its own configuration format and deployer strategy.

4.2 Rsync deployer

Rsync deployer uses rsync to deploy software. The configuration needs to include at least:

— method: 'rsync'
target_host: 'user@@server'
source: '/path/to/installation'
dest: '/path/to/installation'

Other optional parameters are:

working_directory: '/path/to/working_directory' default: None. A parameter that can
be used to give the working directory for the rsync command in a case where relative paths need to be used
instead of absolute paths.

delete: True/False default: False. If set True, rsync deletes extraneous files from the dest dir.
rsync_flags: '[flags]' default: ‘-surlptDxv’.
ssh_command: ' [command] ' default: ssh. The ssh command for rsync.

set_sbit: True/False default: False. If set True, sets sbit for the rsynced files and directories.

Science Build Rules

8 Chapter 4. Deployers

CHAPTER B

Configuring a build

5.1 Spack builds

5.1.1 build_config.yaml

Overview

The main configuration for a spack build is in build_config.yaml.

The file should contain three keys:
* target_architecture: This dictionary defines the default target arcitecture.
* compilers: This array defines the desired compilers.

* packages: This array defines desired end products.

target_architecture

The target_architecture-dictionary should contain the following keys:
e platform: Platform that spack should target (e.g. 1inux).
* os: Operating system that spack should target (e.g. centos7).
e arch: Architecture that spack should target (e.g. westmere).

A sample configuration might be something like:

target_architecture:
platform: linux
os: centos?
arch: westmere

Science Build Rules

compilers

The compilers-array consists of individual compilers as dictionaries. These compilers are evaluated in sequential
order from top to bottom. System compilers that are used to install other compilers should be positioned at the start of
the array.

Each compiler can contain the following keys:
* name: Name of the compiler in spack (e.g. gcc).
* version: Version of the compiler in spack (e.g. 9.2.0).
e system_compiler: Boolean value that tells if the compiler is a system compiler (Default: false).

e licenses: Array of license files that need to be copied into the installation directory. More information on
this at the licenses-page (TODO) (e.g. [1icense.lic]).

e variants: Additional variants that the installation should use (e.g. +binutils for gcc).

* dependencies: Additional dependencies for the installation. Compilers that are built by system compil-
ers should depend on them. Further compilers should also depend on main compiler. Otherwise the com-
pilers might try to build themselves again. (e.g. $gcc@4.8.5 for gcc@9.2.0 and $gcc@9.2.0 for
intel-parallel-studio).

e extra_flags: Array of extra flags that should be given to spack install-command (e.g. ——jobs 4
to limit the build to four cpus).

* flags: Dictionary of flag-parameters that should be written to ~/.spack/linux/compilers.yaml.
These flags are then added to every build done with these compilers. Possible keys are cflags, cxxflags,
cppflags, fflags, 1dflags, 1dlibs (e.g. { 'cflags': '-g' , 'cxxflags': '-g' }
would compile all C and C++ codes with debug flags). Architecture flags are added automatically by
target_architecture.

* target_architecture: Target architecture for building this compiler. This is important if the system
compiler cannot compile software to the desired default architecture. Do note that this does not change the
target for software built with this compiler. It only changes the target for compiling this compiler. Structure is
the same as for target_architecture.

Only name and version are required, but in practice one usually needs to use most of the parameters. An example
configuration might look something like this:

compilers:
- name: gcc
version: 4.8.5
system_compiler: true
flags:
cflags: -02 -g
cxxflags: -02 —-g
fflags: -02 -g
- name: 'gcc'
version: 9.2.0
variants:
- +piclibs
dependencies:
- %gcc@4.8.5
flags:
cflags: -02 -g —-ftree-vectorize
cxxflags: -02 —-g —-ftree-vectorize
fflags: -02 -g —-ftree-vectorize
target_architecture:

(continues on next page)

10 Chapter 5. Configuring a build

Science Build Rules

(continued from previous page)

platform: linux

os: centos7

arch: x86_64
name: intel-parallel-studio
version: cluster.2019.3
licenses:

- license.lic
dependencies:

- %gcc@9.2.0
flags:

cflags: -02 -g

cxxflags: -02 —-g

fflags: -02 -g
target_architecture:

platform: linux

os: centos7

arch: x86_64

packages

The

packages-array consists of individual packages as dictionaries. These packages are evaluated in sequential

order from top to bottom.

Each package can contain the following keys:

* name: Name of the package in spack (e.g. gcc).
* version: Version of the package in spack (e.g. 9.2.0).

* licenses: Array of license files that need to be copied into the installation directory. More information on
this at the licenses-page (TODO) (e.g. [license.lic]).

e variants: Additional variants that the installation should use (e.g. fabrics=verbs for openmpi).
* dependencies: Additional dependencies for the installation. (e.g. $gcc@9.2.0 or “python@3:).

* extra_flags: Array of extra flags that should be given to spack install-command (e.g. ——jobs 4
to limit the build to four cpus).

* target_architecture: Target architecture for building this package. Structure is the same as for
target_architecture.

Only name and version are required. Default variants and versions should be set in packages.yaml. An
example configuration might look something like this:

pac

kages:

name: 'openmpi'
version: 3.1.4
name: 'python'
version: 3.7.4

name:
version: 3.6.1
name: 'py-gpaw'
version: 1.3.0
variants:

- "+fftw'

- '+mpi’

r

- '"+scalapack'

5.1.

Spack builds 11

	Overview of science-build-rules
	Installation of science-build-rules
	Builders
	Common features among builders
	Spack-builder

	Deployers
	Common features among deployers
	Rsync deployer

	Configuring a build
	Spack builds

